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THE DIAGNOSTIC PROBLEM FOR ELASTIC SEMIBOUNDED BODIES* 

V.A. LOMAZOV 

By a diagnostic problem we mean the problem of determining the 
characteristics of a material from information which has been obtained 
experimentally on the physical fields which arise in a body due to the 
action of external actions which have been chosen in a special way /i/. 
In this paper we investigate the problem of determining the density and 
the rigidity characteristics of a weakly inhomogeneous and anisotropic 
linearly elastic medium from measurements on the surface of the body of 
the parameters of the elastic processes taking place in it which 
corresponds to the possibilities of modern measuring techniques /2/. We 
confine ourselves to the treatment of almost stationary processes, that 
is, of processes which are initiated by loads which give rise to 
stationary processes of the same form in a reference homogeneous and 
isotropic body. Hence, a certain lack of stationary behaviour of the 
investigated processes in the body being studied is assumed to be 
exclusively associated with the weak inhomogeneity and anisotropy of 
this body. The semibounded body with a weak curvilinear boundary which 
is considered may serve as a model of a massive component. In the 
mathematical scheme, the problem being investigated belongs to the class 
of inverse problems in mathematical physics /3/. 

I. The propagation of elastic waves in an inhomogeneous anisotropic medium which 
occupies a semibounded domain Q = {--oo<xl, z,<oo, ~(z,,x,)<zs<oo , 0<y<M--const, ~ 
C*(a')} (Fig.l) is described by the equations /4/ 

8 ~r 

Fig. 1 

pu, -- (C, ~zu~. z). ~ = f,; u, ~ C 4 (~ × a÷), p, C~ m ~ C* (~) 

which are closed with the initial and boundary conditions 

ut I,=o = ~ ,  (x), u j  l i fo = % (x) 

(Ci2klU~ , in;)  Ixtffi%, : p ,  ( z  1, x l, t)  

n~=~,,(t+y,l+y,,)-'/,, n8=(t+7,1+7,,)-'/, 

(1.t) 

(1 .2)  

(t  .3) 

The density p and the components of the elasticity tensor Cu~z depend on the spatial 
variables x = (zl, zl, zn), while the components of the displacement vector u = (u,, ul, us) are 
functions of x and the t. The dots denote time derivatives while the index after a comma 
denotes a derivative with respect to the corresponding coordinate. Unless otherwise stated 
summation is carried out over a repeated index and, everywhere, i, ], k, I = 1, 2, 3; r = I, 2; n = 
1,2 ..... N. 

The diagnostic problem under consideration involves the determination of p (x) and 
Ct~l (x) from several problems of the form of (1.1)-(1.3) under N different types of loads 
(after putting ui" -~ ul, {~, ~, p, ]}~" -+ (~, $, P, f}~) using the ancillary information 

u "  - " ( t  .4) t I~,--w -- X, (x, ,  x , ,  t), C,,~z I~,--v ,-(o~ 
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which is assumed to have been obtained as the result of direct measurements. The number N~ 
which corresponds to the number of experiments with different types of loads depends on the 
type of anisotropy in the medium under investigation (the number of functions requlred). 

We shall subsequently assume that the medium investigated is weakly inhomogeneous and 
anisotropic, that is, the quantities [ p - p°* I/p~o) II c,1~ - <~ llc(n)/mm (X~0), ~<0)) are of an 

order of smallness ~ (0<e~), where p<a) and C~z are constant characteristics whlch 

correspond to a certain homogeneous isotropic medium and this means that C,~ ~ k(°~6z1~z 3c 

~(°)(~jz ~- 6~i~) /4/, 0<~o), ~(0) are Lame coefficients and ~1 is the Kronecker delta. 
We note that a weakly inhomogeneity and anisotropy in the elastic properties of the 

material does not at all mean that it will also be so in the strength scheme. For instance, 
the a-irradiation of metals changes their Young's modulus by 10-15% (Poisson's ratio varies 
to a lesser extent) while the yield stress increases several-fold /5/. It follows from this 
that non-uniform irradiation causes a weak inhomogeneity in the elastic properties and a 
strong inhomogeneity in the strength properties of metals. Hence, by determining the elastic 
inhomogeneity of a material within the framework of a diagnostic problem and separatinq out 
the zones with a different level of radiation defects, it is possible to estimate the reserves 
of strength of a component. 

Let us compare an elastic process u~ n (x, t) with a process ul°)" (x, t) which is initiated 
in an analogous manner and takes place in a domain ~ which is occupied by a reference 
homogeneous and isotropic medium, u~ °)" is described by Eqs.(l.l)-(l.3) after making the 
replacement {p, C~l~}(°)-~{p, Cu~z}(x ). We shall assume that the effect of the anisotropy and 
inhomogeneity of the medium investigated on the quantitative characteristics of the processes 
excited in it is rather small and, on the surface of the body, 

su  m"  0 < e ~< 1 <~J=,=~ = d °)~ b ,=~  + , ~ ,=~ ,  

and 

-- O I,, u~0)" 

Let us also assume that the required characteristics of the medium investigated and the 
elastic processes occurring in it are analytical with respect to the small parameter 8 which 
has been introduced, that is, 

. {p, C, ~l, u/~} = ~ e'~ {P, Cu~z, u,~} ('~) 
r a = o  

We note that, having confined ourselves to the treatment of bodies with a weakly curvi- 
linear boundary, that is, by putting 7 (xz, xs) = e~ (xz, x,), it is possible with the aid of 
Taylor's series expansion to pass from the values on the surface Xs = 7 (Xlv xz) to the corre- 
sponding values on the hyperplane x a = 0. The assumptions which have been adopted enable 
one, in accordance with the procedure used in the perturbation method, to pass from relation- 
ships (I.1)-(1.4) to the chain of equations 

p(O)u~a),,'" C(O) u(O),~ . .(o)u(m) '~'" _ C(o,),u!'~)P 
-- ,~z ~,z~=l . . . . .  v , . . . . . .  ~ = ( 1 . 5 }  

m - - 1  
( ( c~ i%. ( : )~ ' ) ,  ~ _ p(,~-~)~?)"") . . . .  

s~o  

which are closed by the initial and boundary value equations 

m aa as m--s 

+ o. L=o = 
S=,O q==O 

m a II 

/~(o) 
~. ~--~-a~, - ' - T ' ' ~ t  ) I ~ . = o  - - oo,~,-,,~,a 

s = o  

8 o m p ,  n 

(t_ , 6 )  

We shall subsequently assume that the characteristics of the reference medium {p, ~, ~)(0) 
are known, that is, the problem will involve the refinement of the characteristics of the 
medium investigated. The structure of relationships (1.5) and (1.6) enables one to search 
successively using m = 1,2,... {u~",p, Ctlkt}(m). We note that the initial problem of determining 
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p, C:I~: , ul n from N relationships of the form of (1.1)-(1.4) is non-linear 

(since these relationships contain the derivatives of the required functions). In this sense 
the transition from relationships (1.5) and (1.6) can be considered as a procedure based on 
the perturbation method, which is widely used in solving problems concerned with the propa- 

gation of elastic waves /6-8/. 
We will now present an algorithm for finding u~)~(x,t) {Cllk~, p}(~)(x). 
We note that the first matrix equation from (1.5) (when m =0) does not contain the 

unknowns {p, Ctykl, u:n} (s) (s = ~, 2 .... ) and, together with the first three conditions of (1.6), 
which are considered when m=0, there is a series of ordinary initial-boundary value 
problems in ~°)n(x,t) which describe the propagation of elastic waves in a domain ~ which 
is occupied by a homogeneous isotropic medium. For simplicity, we shall henceforth assume 
that the solutions of these problems are known and have the form ~0)~ (x, t) = sin (a,t) g:" (x) 
(there is no summation over n) which naturally imposes constraints on {~,~, p,/}~n, that is, 
on the conditions for the initiation of the elastic processes in the medium investigated..It 
is noted that the actual form of {~, ,, p, /}i" can be obtained by the direct substitution of 

~o)- (X, t) into (i.i) -(1.3) after the substitution {p, Cu~}(°) --*- {p, C,,k~}. 

2. In accordance with (1.5) and (1.6), which are equations in {p, C,~, ul(n)} (*) , we have 

p(O)u~1)n" (o) (1)a I (o)a'". iC(~) u(O)n~ --C,!,kluk, Ij =--P()U, ~,, ,$vt ~,!).j 

u:')'{,_o = o, ul ~,~" {,=o = o 
c(O) u(1)n __ p(1) u(o)n - -  p(o) u(o)n - -  c~ /,(o) . (o)n~ ] 

3jk/ k, l-1-~32~l k , l  ~-(~'3J~l k, 13 ,rLr~kltak, l ] lx ,~o ~ 0  

ccu(o)'h I - -  X~x) n,  ,~(~) (u~ '>~ + , . ,  , , ~ .=o  - ,~,j~z{~.=o = O 

( 2 . t )  

( 2 . 2 )  

The problem of determining these functions is to a large extent analogous to the 
linearized diagnostic problem in /i, 9, I0/ and we shall therefore confine ourselves to the 
presentation of a scheme for solving it. The problem is divided into two steps: Step 1 is 
the determination of ~i), (x,t) and Step 2 is the recovery of {p, Ci;kl}(Z)(x) from the right- 
hand side of the matrix Eq.(2.1). 

Step I. Let us apply the operator L = (0t -Sa, Sl)(l is a unit operator) to Eq.(2.1) after 
which, for each fixed n, we get 

p(O)v,'" - C ~ , v ~ .  z~ = 0 ( 2 . 3 )  

For the unknown vector function vt=u(*)". J~a~ *)" which has been introduced (there is 
no summation over n), we obtain from the first three conditions of (2.2) 

v, I,=. = o, u. I~=o = LX~ 1)', vr.a 1~,=o = -- L~.)~IP (°), (2.4) 

US, 3 ] ~ 0  = ~(0)~(1)"/((0) ~ 2~(0)) 

When account is taken of (2.3), the boundary conditions (2.4) enable one to find {U, U.s , 
W , W , a }  when x, = 0 where U = d i v  v ,  W = ( W 1 ,  W , , W 3 )  = rot  v.  

It follows from the first condition of (2.4) that the initial conditions for these func- 
tions will be homogeneous: UIt_-~:0 , W ],~ = 0. Application of the div and rot operators 
to Eqs.(2.3) enables one to obtain 

p c o ) u " - - ( ~ o ) + 2 ~ ( o ) )  AU = 0, p ~ o ) W " - - ~ ( o ) A W ~  O 

We therefore get a wave equation in U and each of the three components (of which only 
two are independent) of the vector function W, a homogeneous initial condition and two 
boundary conditions when Is:0: the boundary value of the required function and its normal 
derivative which constitutes a non-hyperbolic Cauchy problem (a Cauchy problem with data on a 
non-spatial manifold) in the case of the wave equation /ii, 12/. 

The problem is classically ill-posed in the class of functions Cn (B+ s X B+): its sol- 
ution does not exist for any values of the Cauchy data (from this class) when z 3 = 0. This 
makes the diagnostic problem ill-posed as a whole. However, the solution of a non-hyperbolic 
Cauchy problem is unique and its explicit representations (together with an investigation of 
the stability) are presented in /13, 14/. It is noted that, in the class of analytical func- 
tions, a non-hyperbolic Cauchy problem for the wave equation is classically well-posed 
(according to Hadamard) and can be reduced to a conventional Cauchy problem with the aid of a 
Volterra substitution /Ii/: it*-~x3, tz3*-+t (here, ¢ is the square root of -I) after which 
Kirchhoff's formula can be used to obtain the solution. By finding U, W, and HI~ it is 
possible to recover v : (~, u,, us) with the aid of (2.4) and then to determine ~1)n (x, t) 
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when t = 0 from the equations u? )'~ -{-a~2u? m = vl and the initial conditions (2.2). This 
constitutes the first step in the problem. The procedure involved in this step must be 
carried out N times. 

Step 2. Knowing u~ a)~ (x, t), it is possible to find the right-hand sides of Eqs. (2.1) 
which, in accordance with the assumption which has been adopted, will have the form sin (a,t) 
F~ TM (x) (there is no summation over n). The problem in the second step will therefore 
involve the determination of {p, C~,~t}(*) (x) from the equations 

/C(1) _'~ __ p(1)n a,~2P(1)g, n + ~ , j~ l~ ,  ~), j . . . .  ( 2 .5 )  

(no summation over n) and the boundary conditions (2.2)). The number N (the number of dif- 
ferent experimental test regimes) is selected such that the number of independent scalar 
equations of the form of (2.5) should correspond to the number of independent unknowns. 

In the case of anisotropy of a general form, the required tensor C(I)..~ (x) contains 21 

independent components. If, however, it is known "a priori" that the material being invest- 
igated is isotropic, then it is sufficient to take N = I when determining the independent 
characteristics of the medium {@, ~, ~}(I) (x), that is, in this case it suffices to carry out a 
single dynamic trial experiment with measurement of the three components of the displacement 
vector on the surface of the body. Finally, a number of requirements must be satisfied 
regarding the functions g n (x), that is, regarding the conditions of the initiation of the 
elastic waves. In the general case the solution of the system of Eqs. (2.5) is attended by 
considerable difficulty. The problem is somewhat simplified with a special choice of g n (x) 
/9/ which enables one, in a number of cases, to find {p, C~]~t}(z)(x) uniquely without invoking 
the boundary conditions for these characteristics, that is, without specifying conditions of 
the form of the last relationships from (2.2). This question will be clarified in greater 
detail when an actual example is considered. 

3. In order to determine {p, Cu~l, u~"} (2) from relationships (1.5) and (1.6), besides the 
latter we shall have 

P(°)u~ 2)'r - -  C (°~,~lu '2)'~, 0 = --p(2 'u~°)" '"  + ( 3 . 1 )  

((~(~) (o),t~ ric(x) U(1)n~, ~ U ~ ,  t 1, j + t~ ~j~Z ~, ~1, ~ - -  P(*)U~ 1)" ] 

u7 ~" [,=o = o, u~')"'l,-~= o 
c(O) u(2)n tC(~) . (o)n _u [C (1) u (t)n o~C (°) u (a)n ~- o~ [C (1) {O)n~ 

3~kl k, l x s = O = - - ~ .  $3~l~k, l ~ t 3~kl k, l -~ 3~1 ~,13 . ~ ~3~kl~tk, l ], 3 ~ - 

l /  ( ~ C  (0) u (O)n - -  iC(O) ~(a)n _ C(1) u(o)n,, p(o) I~, u(o) ", 

{~? )" + [~?>" + '/,=~u?)"]} I=.=o = o (3.2),  

,-(2) raC}~ ~,,~, + ~ ~, 311 I,,=o = 0 

In relationships (3.1) and (3.2), the expressions composed of functions which have 
already been found are separated out inside square brackets. Let us represent the required 
solution ~(2)n (x, t) in the form u,(2),~ = Ui,@ V, n, where the matrix function Vi n (x,t) satis- 
fies relationships (3.1) and (3.2) in which only expressions within square brackets form the 
right-hand sides. The problem of determining Vi n in the mathematical scheme consists of 
several conventional initial-boundary value problems for the equations in the dynamic theory 
of elasticity which describe the propagation of elastic waves in a half space under the 
action of forces and force effects on the boundary. After finding Vin (x, t), the problem of 
determining U,n, C~t and pC,) from (3.1) and (3.2) is completely analogous to the problem 

of determining ul (1)n, C~t and p(a) from (2.1) and (2.2) considered in Sect.2. 

It is seen that, in this way, it is possible to obtain successively all the terms in the 
expansions for the characteristics of the elastic processes u~n (x,t) which are used for the 
diagnosis and, what is more important within the framework of this problem, the characteristics 
of the medium being investigated {p, Cij~}(x). 

4. As an example let us consider the simplest case when the semibounded body is the half 
space ~ > 0(¥~0) and it is known beforehand that the medium under investigation is isotropic 
and its characteristics are solely dependent on the distance to the surface. Then (under 
conditions for the excitation of elastic waves which are independent of x, and x,), the 
diagnostic problem becomes one-dimensional: the characteristics of the medium are functions 
of xs, while the characteristics of the processes are functions of xs and the time t. 

The one-dimensional problem of determining the characteristics of an isotropic inhomo- 
geneous medium or a medium with inhomogeneous initial deformations has been investigated 
previously /15, 16/. At the same time, it should be possible to do this without the 
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simplifying assumptions which are necessary to solve the spatial problem. This example, 
therefore, does not pretend to be a new investigation of the one-dimensional problem, but 
solely illustrates the approach which is laid down in this paper as it is applied to the 
simplest case. 

The number of required characteristics of the medium is reduced to three: {p, A, ~} (z,). 
Hence, in (1.5), (1.6) and subsequently, we put N = i. When this is done, relationships 
(2.1) and (2.2) take the form (there is no summation over 4) 

p(0)u~l)l ' - -  G(O)a( ~)1 --  IG(1),,(O)l~ n(*), (on (4 . i )  

G~ "~} = ~('~) + 6,~ ( ~ ( ' )  + ~(m)) 

u i l > l [ t = 0  a (1>1 I t = 0  = 0; (I)I = X5 TM ( t ) ,  ..(1>1 I - -  R(  1)1 = _ ,  u~ x ,=O - , .  3 IX,=O - -  - ,  ( t )  

By applying the operator L = (8t=+ al sX) to these relationships and allowing for the fact 
that ,~(0) 1 ,. sin (ai0 gl (ms) (no summation over i) , we obtain for v, = Lu (*)* 

p(O)~, .. = G~O)u,. = = 0 (4.2) 

v, [t=o ffi o; v {~,--o = LX~ ' ) ' ,  v , . s  ~.--o = LS(m, 

The problem of determining v = (v,,~,~) corresponds to the problem in the first step of 
the diagnosis (2.3), (2.4) but, by virtue of the assumptions which have been made, it is one- 
dimensional and this means that, unlike the general spatial case, it is classically well-posed. 
Actually, the function v (a~,t) can be extended onto the domain t<0 in an antisymmetric 
manner: _v (~,--,)-- --v (xs, t) and, for each component v,, we obtain a conventional Cauchy 
problem for a one-dimensional wave equation (apart from the relabelling ~ 0. For instance, 
v¢ (~, t) can be found using d'Alembert's formula. Next, in order to determine the right-hand 
side of the first relationship from (4.1), we apply the operator at to it and make use of the 
fact that -LI*)*" (~, 0) = 0. We get 

P(1)giais -{- (G(,1)g,. s). a = a?~u ," }t=~ = ¢, (xs) (4.3) 

(where there is no summation over 4). This system of ordinary differential equations is 
readily solved. The unknowns p(*) and G(*)x =-G (*), = p(*) occur in the first two equations of 
(4.3) (when ,= i.2) and, moreover, p(*) occurs in a linear algebraic manner. By expressing 
p(n from the first equation and substituting it into the second, we obtain the equation in 
)L(*) 

A~t(1)8-~-B~ (1) -~ C = 0; A (xo) = alglgl .sa  - -  aag~g,,m, B (xa) = axglg~,a - -  

a~g~g~,a, C ( x s )  = a~gs(D l - -  a x g ,  (~s  

We note that A and B depend on the type of loading while C also depends on the results 
of the measurements. 

Let {A,.B, C} (z,) be analytical functions. If A ~ 0, then 

Xs xl 

.<x) (~,) = _ exp (- j( A-7~- an) ~ (n) LF Jk ~7~c (n) exp k)/~ ~ B  (~) ~g)~ ~n 4 ~(0)J 
0 0 0 

that is, the boundary value of this function has to be specified for the unique determination 
of ~(i). If, at a certain point ~*, we have A(zs*)=0 and B(xa*)=0 then this enables one to 
find ~(*) (x,*)=--C (~*)/B (~*) and this means that the uniqueness of what is found is achieved 
without the use of the boundary value ~(i)(0). If A ~-0 and B ~ 0, we have an algebraic 
equation in ~(*) and ~(*) =- C/B. If A----B----0, this means that it is impossible to determine 
~0) under the given loads which excite non-stationary elastic processes in the medium under 
investigation. 

After ~(t) has been determined from the first equation of (4.3), we find 

p(*) (z,) = [~, -- (~(i) g,,a),a]/(alg,) ' a,gx ~ 0 

In order to determine G~ (*) = ~(t)+ 2~ (I) , we substitute the result which has been obtained 
for p(m) into the third equation of (4.3). We obtain the equation 

(Ga (*) D),s = ~s -- p(X) aa' gs, D = gs,s 

which is readily integrated. We note that, if D = 0 at just a single point za* then, by 
virtue of the boundedness of G8 (I), we have 

{cC. ' , , )  I . . . . .  . = o 

and 
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| 

a~ x' (x~) _ D ~ , )  f [¢~ (']) - -  p(~) (~) g3 (q) .~] an 
as* 

that is, it is not necessary to specify the boundary value of ~i)(0) 
It is noted that, subsequently when determining ~(m), l(m)(m = 2,3, ), the coefficients A~ B 

and D are independent of m and, in the second step of the problem, p(m) ~(m) ~(m) are sought 
using analogous formulae. 

We now present some results of numerical calculations. In relationships (4.1) the 
variables and the required functions have been made dimensionless using the formulae 

= 7 7 ,  ~ =  E(O> , = - ~ 7 '  T = - ~  Vo ~ 

~ ' a :  a ' = ~  , E(O)=~o)+2~ . (o )  

For the calculations, we have used 

a I= 3,~= 2, a s= I.~, = cos 323. g2= cos2~ s,ga = c0sx s,~1(a~*=X~*)*= 0, 
~(*)* = 0, 05 (sin [ - -  0,5 sm 2[) 

A s  a r e s u l t :  ~ = i , ~ = 0 . 5  ( i . e .  ~ < m ) , ~ < ~ = 0  w h e n  m ~ i ) .  T h e  r a t i o  E = i + 2 ~  t o  E (°) i s  
shown in Fig.2. The dot-dash line takes account of the first and second terms, and the solid 
line takes into account the first three terms of the expansion. Inclusion of the fourth term 
in the expansion of E in powers of the small parameter does not make any appreciable con- 
tribution to the calculation of this characteristic which is evidence of the convergence of 
the series. 

0. 
0 ; Z zj 

Fig.2 
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THE METHOD OF PROJECTION AND DECOMPOSITION OF ANALYTICAL FUNCTIONS 
IN BOUNDARY-VALUE PROBLEMS OF ELASTICITY THEORY* 

A.M. TSALIK 

A technique is proposed for reducing boundary-value problems of 
elasticity theory in multiply connected regions to a system of algebraic 
equations. The technique is based on the projection method for 
analytical functions of a complex variable combined with decomposition 
of the original region. The starting equations are provided by the 
Laurent series expansion of the necessary and sufficient condition of 
analyticity of functions. The coordinate functions are the terms of the 
Laurent series for the required potentials of elasticity theory in each 
of the subregions obtained from the original region by decomposition. 
The proposed method avoids the construction of integral equations, while 
preserving the advantages of the boundary-element method. 

I. ~lyticity conditions. The necessary and sufficient condition for the function 
to be analytic in a given region B with the boundary OB may be represented in the form /i/ 

O B  $ - -  z 

I ¢ (t) ~ d t  = 0 (~ = t ~, ( t  - -  z~) 4 -* ,  k = O, t . . . .  ) ( t . 2 )  
Fig. 1 oB 

Assume that the given regi~ B = UB i is decomposed so that inside each subregion B i 
the function • (z) is representable by its Laurent series 

We assume that B is an arbitrary, closed, multiply con- 
nected region whose boundary OB satisfies the Holder con- 
diton (Fig.l), and the point at infinity does not belong to 
B. If {zm} are arbitrary points of the interior subregions 
that do not belong to B, then condition (I.I), after expansion 
in a Laurent series,can be replaced by an infinite system of 
equations for the analytical function ~, 

• ' = ~, ~ ~, (z - zmy + ~ e/(z - z,)' (I 3) 
~=1 8=--I s = o  

where M-~ 1 is the connectivity of the region B, zl is an arbitrary point of the subregion 
B ~. Analytical continuity conditions for ~ should be satisfied on the joining curves of 
the subregions. 

The functions in the expansion (1.3) are selected as the coordinate functions of the 
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